Materiały konferencyjne SEP 2019
[28] Laxminarayana C., Crosdale P.J. 1999: Role of coal type and rank on methane sorption characteris- tics of Bowen Basin, Australia coals. International Journal of Coal Geology, nr 40, str. 309–325. [29] Mastalerz M., Gluskoter H., Rupp J. 2004: Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. International Journal of Coal Geology, nr 60, str. 43–55. [30] Weishauptová Z., Sýkorová I. 2011: Dependence of carbon dioxide sorption on the petrographic composition of bituminous coals from the Czech part of the Upper Silesian Basin, Czech Republic. Fuel nr 90, str. 312–23. [31] Weishauptová Z., Přibyl O., Sýkorová I., Machovič V. 2015: Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption. Fuel, nr 139, str. 115–124. [32] Weniger P., Kalkreuth W., Busch A., Krooss B.M. 2010: High-pressure methane and carbon dioxide sorption on coal and shale samples from the Parana Basin, Brazil. International Journal of Coal Ge- ology nr 84, str. 190–205. [33] Milewska–Duda J., Duda J., Nodzeński A., Lakatos J. 2000: Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon. Langmuir, nr 16, str. 5458–5466. [34] Reucroft P.J, Sethuraman A.R. 1987: Effect of pressure on carbon dioxide induced coal swelling. Energy & Fuels, nr 1, str. 72–75. [35] Beamish B.B., Gamson P.D. 1993: Sorption behavior and microstructure of Bowen Basin coals, Coalseam Gas Research Institute, James Cook University, Technical Report CGRI TR 92/4, Febru- ary 1993 [36] Chalmers G.R.L., Bustin R.M. 2007: On the effect of pertographic composition on coalbed me- thane sorption. International Journal of Coal Geology, nr 69, str. 288–304. [37] Levine J.R., 1993: Coalification: the evolution of coal as a source rock and reservoir rock for oil and gas, Law B.E., Rice D.D., (ed.) Hydrocarbons from Coal. AAPG Studies in Geology, nr 38, str. 39– -77. [38] Busch A., Gensterblum Y., Krooss B.M., Siemons N. 2006: Investigation of high – pressure selec- tive sorption/desorption behavior of CO 2 and CH 4 on coals: An experimental study. International Journal of Coal Geology, nr 66, str. 53–68. [39] Czerw K., Jachimczyk M., Baran P., Zarębska K. 2018: Selected physicochemical properties of li- thotype concentrates of low rank coal. ISSHAC-10 tenth International Symposium Effects of Surface Heterogeneity in Adsorption, Catalysis and related phenomena. 27–31 August 2018, Lublin, Poland. [40] Baran P., Czerw K., Dudzińska A., Zarębska K. 2018: Sorpcja gazów kopalnianych na koncentratach litotypów niskouwęglonego węgla kamiennego. GZN2018 XXV Międzynarodowa Konferencja Na- ukowo-Techniczna z cyklu Górnicze Zagrożenia Naturalne 2018, Zagrożenia naturalne na dużych głębokościach. Jaworze, 7–9 listopada 2018. The Effect of the Low Rank Coal Lithotypes on the Sorption of CH 4 and CH 4 /CO 2 Mixtures The aims of this work was the assessment of the effect of maceral composition of low rank coal on methane and methane/carbon dioxide mixture sorption capacity. This issue was ad- dressed by performing adequate sorption experiments carried out at 298 K at low pressure on basic coal sample and two lithotypes concentrates, vitrain and durain, isolated from the original coal sample. The results of methane sorption experiments show that for vitrain and durain the course of isotherms is very close and the results for basic sample are higher than those of con- centrates. The sorption capacity of the gas mixture is the highest in the case of vitrain and the lowest for durain and has a medium value for basic coal. The tendency of sorption capacity of CO 2 to depend on maceral composition was indirectly confirmed. Desorption hysteresis was observed for every coal-gas system under investigation. The Dubinin-Radushkevich equation shows a very good agreement with all the experimental data.
Made with FlippingBook
RkJQdWJsaXNoZXIy NTcxNzA3