Materiały konferencyjne SEP 2021

[8] Witecki K., Grotowski A., 2019. Technical, technological and environmental aspects of the manage- ment of technological waters in mines and concentrators owned by KGHM Polska Miedź S.A. IOP Conf. Ser.: Mater. Sci. Eng. 641 . Mineral Engineering Conference (MEC 2019) 16–19 September 2019, Kocierz, Beskid Mały, Poland. [9] Jian-ming C., Run-qing L., Wei S i Guan-zhou Q., 2008. Effect of mineral processing wastewater on flotation of sulfide minerals. Trans. Nonferrous Met. Soc. China, 19, 454-457. [10] Quinn J. J., Kracht W., Gomez C. O., Gangon C. i Finch J. A., 2007. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Mineral Engineering, 20, 1296-1302. [11] Yousef A. A., Arafa M. A., Ibrahim S. S. i Khalek M. A., 2003. Beneficiation in Arid Regions – Simulation and Application. Proceedings of XXII International Mineral Processing Congress (Cape Town, RPA). [12] Laskowski J., 1969. Chemia fizyczna w procesach mechanicznej przeróbki kopalin. Wydawnictwo Śląskie, Katowice [13] Castro S., Venegas I., Landero A., Laskowski J.S., 2010. Frothing in seawater flotation systems. Proc. XXV Int. Mineral Processing Congress, Brisbane, 4039-4047. [14] Castro S., Ramos O., Cancino J.P. i Laskowski J.S., 2012a. Frothing in the Flotation of Copper Sulfide Ores in Sea Water. Water in Mineral Processing – Proceeding of The First International Symposium. Soci- ety for Mining, Metallurgy and Exploration. [15] Castro S., Toledo P. and Laskowski J.S., 2012b. Foaming Properties of Flotation Frothers at High Electrolyte Concentration. Water in Mineral Processing – Proceeding of The First International Sympo- sium. Society for Mining, Metallurgy and Exploration. [16] Laskowski J.S., Castro S., Ramos O., 2014. Effect Of Seawater Main Components On Frothability In The Flotation Of Cu-Mo Sulfide Ore. Physicochem. Probl. Miner. Process. 50(1), 17−29. [17] Muzenda E., 2010. An investigation into the Effect of Water Quality on Flotation Performance. Inter- national Journal of Chemical and Molecular Engineering, 4(9), 562-566. [18] Lekki J., Laskowski J.S., 1975. Wpływ chlorku sodu w wodach kopalnianych LGOM na flotację rudy miedzi. Physicochem. Probl. Miner. Process, 5(1):115–123. [19] Kowalska M., 1976. Badanie wpływu wody z rzeki Odry na wyniki flotacji rudy polkowickiej. Spra- wozdanie ZD Cuprum w Lubinie Nr 3/TP/76. [20] Kowalska M., 1978. Wpływ jakości wody technologicznej na wskaźniki wzbogacania w ZG ZWR Rudna. Sprawozdanie ZD Cuprum w Lubinie. [21] Łuszczkiewicz A., Bakalarz A. i Duchnowska M., 2017. The effect of process water salinity on flota- tion of copper ore from Lubin mining region (SW Poland). Konferencja Inżynierii Mineralnej, 18, 1-6. [22] Le T.M.K., Schreithofer N., and Dahl O., 2020. Dissolution Test Protocol for Estimating Water Quality Changes in Minerals Processing Plants Operating with Closed Water Circulation. Minerals, 10, 653, pp 2- 18. [23]Castro S., Laskowski J.S., 2015. Depressing effect of flocculants on molybdenite flotation. Minerals Engineering, 74, 13-19. [24] Muzinda I., Chreithofer N., 2018. Water quality effects on flotation: Impacts and control of residual xanthates. Minerals Engineering 125, 34–41. [25] Mattila K., Zaitsev G., Langwaldt J., 2007. Biological removal of nutrients from mine waters. Bio- loginen ravinteiden poistokaivosvesistä. Final report—loppuraportti. Finnish Forest Research Institute, Rovaniemi [26]K. S. E. Forssberg, and M. I. Hallin, “Process Water Reticulation in a Lead-Zinc Plant and other Sul- phide Flotation Plants,” in Proc, Symp. Challenges in Mineral Processing, K. V. S. Sastry and M.C. Fuer- stenau, Ed, Society of Mining Engineers, 1989. [27] Foroutan A., Abadi M.A.Z.H., Kianinia Y. & Ghadiri M., 2021. Critical importance of pH and collec- tor type on the flotation of sphalerite and galena from a low‑grade lead–zin ore. Scientific Reports, 11. [28] Zanin M., Lambert H., du Plessis C.A., 2019. Lime use and functionality in sulphide mineral flotation: A review. Minerals Engineering 143 [29] Abbassi R., Khan F., Hawboldt K., 2009. Prediction of Minerals Producing Acid Mine Drainage Using a Computer-Assisted Thermodynamic Chemical Equilibrium Model. Mine Water Environ 28,74–78.

RkJQdWJsaXNoZXIy NTcxNzA3