Materiały konferencyjne SEP 2021

[30] Häyrynen K., Pongrácz E., Väisänen V., Pap N., Mänttäri M., Langwaldt J., Keiski R.I., 2009. Con- centration of ammonium and nitrate from mine water by reverse osmosis and nanofiltration. Desalination, 240(1–3), 280-289. [31] Hellman M., Bonilla-Rosso G., Widerlund A., Juhanson J., Hallin S, 2019. External carbon addition for enhancing denitrification modifies bacterial community composition and affects CH4 and N2O produc- tion in sub-arctic mining pond sediments. Water Research, Volume 158, 22-33. [32] Dzingai, M., Manono M.S., Corin K.C., 2021. Probing the Effect of Water Recycling on Flotation through Anion Spiking Using a Low-Grade Cu–Ni–PGM Ore: The Effect of NO3−, SO42− and S2O32−. Minerals, 11(4), 340. [33] Witczak S., Duda R, 2009. Zagrożenie i ochrona wód podziemnych w rejonie składowiska Żelazny Most – model krążenia wód w składowisku i podłożu. Geologia, 35(2/1), 289-295. [36] Zhang R., Hedrich S., Römer F., Goldmann D., SchippersA., 2020. Bioleaching of cobalt from Cu/Co- rich sulfidic mine tailings from thepolymetallic Rammelsberg mine, Germany. Hydrometallurgy, 197. [37] Jermakka J., Wendling L., Sohlberg E., Heinonen H., Merta E., Laine-Ylijoki J., Kaartinen T. & Mroueh U.M., 2015. Nitrogen compounds at mines and quarries. Sources, behaviour and removal from mine waters. Report number: VTT Technology 226. [38] Suyantara G.P.W., Hirajima T., Miki H., Sasaki K., 2018. Floatability of molybdenite and chalcopyrite in artificial seawater. Minerals Engineering 115, 117–130. [39] Craig, V.S.J., Ninham, B.W., Pashley, R.M., 1993a. Effect of electrolytes on bubble coalescence. Na- ture 364, 317. [40] Craig, V.S.J., Ninham, B.W., Pashley, R.M., 1993b. The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97 (39), 10192–10197. [41] Del Castillo, L.A., Ohnishi, S., Horn, R.G., 2011. Inhibition of bubble coalescence: effects of salt concentration and speed of approach. J. Colloid Interface Sci. 356 (1), 316–324 [42] Lin S., Liu L., Wu M., Hu Y., Sun W., Shi Z., Han H., Li W., 2019. Minimizing beneficiation wastewater through internal reuse of process water in flotation circuit. Journal of Cleaner Production, 245, 118898. [43] Shen Y., Nagaraj D.R., Farinato R., Somasundaran P., 2016. Study of xanthate decomposition in aque- ous solutions. Minerals Engineering, 93, 10–15. [44] Beaussart, A., Parkinson, L., Mierczynska-Vasilev, Beattie, A., 2012. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies. J. Colloid Interface Sci. 368, 608–615. [45] Farrow J.B., Fawell P.D., Mittoni L., Nguyen T.V., Rudman M., Simic K., Swift J.D., 2003. Tech- niques and methodologies for improving thickener performance. Proceedings: XXII International Mineral Processing Congress, Cape Town, South Africa. [46] Wang P., Sun Z., Hu Y., Cheng H., 2019. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Science of the Total Environment, 695. [47] Chlot S., Widerlund A., Siergieiev D., Ecke F., Husson E., Öhlander B., 2011. Modelling nitrogen transformation in waters receiving mine effluents. Science of the total Environment 409, , 4585-4595 [48] Miller M., 2018. Thickener design, control and development. Conference: ALTA, Perth, Australia. [49] Jeldres R.I.., Uribe L., Cisternas L.A., Gutierrez L., Leiva W.H., Valenzuela J., 2019.. The effect of clay minerals on the process of flotation of copper ores – A critical review. Applied Clay Science 170, 57– 69.

RkJQdWJsaXNoZXIy NTcxNzA3