Materiały konferencyjne SEP 2024

4 [8] Checinska Sielaff, A.; Upton, R.N.; Hofmockel, K.S.; Xu, X.; Polley, H.W.; Wilsey, B.J. Microbial Community Structure and Functions Differ between Native and Novel (Exotic-Dominated) Grassland Ecosystems in an 8-Year Experiment. Plant Soil 2018, 432, 359–372, doi:10.1007/s11104-018-3796- 1. [9] Wagg, C.; Hautier, Y.; Pellkofer, S.; Banerjee, S.; Schmid, B.; van der Heijden, M.G. Diversity and Asynchrony in Soil Microbial Communities Stabilizes Ecosystem Functioning. eLife 2021, 10, e62813, doi:10.7554/eLife.62813. [10] Quadros, P.D. de; Zhalnina, K.; Davis-Richardson, A.G.; Drew, J.C.; Menezes, F.B.; Camargo, F.A. de O.; Triplett, E.W. Coal Mining Practices Reduce the Microbial Biomass, Richness and Diversity of Soil. Applied Soil Ecology 2016, 98, 195–203, doi:10.1016/j.apsoil.2015.10.016. [11] Hu, Y.; Yu, Z.; Fang, X.; Zhang, W.; Liu, J.; Zhao, F. Influence of Mining and Vegetation Restora- tion on Soil Properties in the Eastern Margin of the Qinghai-Tibet Plateau. International Journal of Environmental Research and Public Health 2020, 17, 4288, doi:10.3390/ijerph17124288. [12] Punia, A.; Bharti, R. Loss of Soil Organic Matter in the Mining Landscape and Its Implication to Climate Change. Arab J Geosci 2023, 16, 86, doi:10.1007/s12517-023-11177-8. [13] Thavamani, P.; Samkumar, R.A.; Satheesh, V.; Subashchandrabose, S.R.; Ramadass, K.; Naidu, R.; Venkateswarlu, K.; Megharaj, M. Microbes from Mined Sites: Harnessing Their Potential for Recla- mation of Derelict Mine Sites. Environ Pollut 2017, 230, 495–505, doi:10.1016/j.envpol.2017.06.056. [14] Berg, G.; Smalla, K. Plant Species and Soil Type Cooperatively Shape the Structure and Function of Microbial Communities in the Rhizosphere. FEMS Microbiology Ecology 2009, 68, 1–13, doi:10.1111/j.1574-6941.2009.00654.x. [15] Bierza, W.; Woźniak, G.; Kompała-Bąba, A.; Magurno, F.; Malicka, M.; Chmura, D.; Błońska, A.; Jagodziński, A.M.; Piotrowska-Seget, Z. The Effect of Plant Diversity and Soil Properties on Soil Microbial Biomass and Activity in a Novel Ecosystem. Sustainability 2023, 15, 4880, doi:10.3390/su15064880. [16] Hristov, B.; Filcheva, E.; Ivanov, P. Organic Matter Content and Composition of Soils with Stagnic Properties from Bulgaria. . ISSN 2016, 1. [17] Total Nitrogen. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press, 2007 ISBN 978-0-429-12622-2. [18] Staugaitis, G.; Rutkauskienė, R. Comparison of Magnesium Determination Methods as Influenced by Soil Properties. Žemdirbystė (Agriculture) 2010, 97, 105–116. [19] Lochman, J.; Zapletalova, M.; Poskerova, H.; Izakovicova Holla, L.; Borilova Linhartova, P. Rapid Multiplex Real-Time PCR Method for the Detection and Quantification of Selected Cariogenic and Periodontal Bacteria. Diagnostics 2020, 10, 8, doi:10.3390/diagnostics10010008. [20] Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat Methods 2016, 13, 581–583, doi:10.1038/nmeth.3869. [21] Dacey, D.P.; Chain, F.J.J. Concatenation of Paired-End Reads Improves Taxonomic Classification of Amplicons for Profiling Microbial Communities. BMC Bioinformatics 2021, 22, 493, doi:10.1186/s12859-021-04410-2. [22] Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat Biotechnol 2020, 38, 685–688, doi:10.1038/s41587-020-0548-6. j M. 1995: Poszukiwanie nowych rozwiązań obudowy kotwiowej na przykładzie firmy ANI Arnall, największego producenta obudów kotwiowych w Austra- lii. Materiały Szkoły Eksploatacji Podziemnej ‘95, str. 165–172.

RkJQdWJsaXNoZXIy NTcxNzA3